JEE MAIN 2017

Sample Paper 2

Tips For JEE Main Preparation

PHYSICS

1.		ph gives velocity is seen by another proje	ectile is a parabola,	h gives change in velocity ence fixed to the body itself.
2.	A body is moving in a when the radius vector	r describes an angle θ :	_	de of the change in velocity
	(A) $v\cos\theta$	(B) $2\upsilon\cos\left(\frac{\theta}{2}\right)$	(C) $v\sin\theta$	(D) $2\upsilon\sin\left(\frac{\theta}{2}\right)$
3.	What can be the possi under constant accele		ent (v – s) graph of a partic	cle moving in a straight line
	(A) straight line	(B) parabola	(C) ellipse	(D) circle
4.	Two forces, with equal	magnitude F, act on a	body and the magnitude	of the resultant force is $\frac{F}{3}$.
	The angle between the	e two forces is		
	(A) $\cos^{-1}\left(\frac{17}{18}\right)$	(B) $\cos^{-1}\left(-\frac{1}{3}\right)$	(C) $\cos^{-1}\left(\frac{2}{3}\right)$	(D) $\cos^{-1}\left(\frac{6}{9}\right)$
5.				t an object at their bottom. the object can have without
	(A) 10 N	(B) 20 N	(C) 20√2 N	(D) 40 N
6.	forces? Also name the	triangle formed by the	forces as sides	at is the angle between the
	(C) 120°, 30°, 30° an is	sosceles triangle	(D) 120 ⁰ an obtuse ang	led triangle
7.	to rest after the collision	. The loss of kinetic ener	gy of the system is	block. The lighter block comes
	(A) 1 J	(B) 2 J	(C) 3 J	(D) 4 J

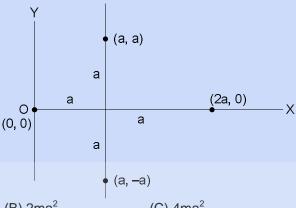
8. A body of mass 5 kg collides elastically with a stationary body of mass 2.5 kg. After the collision, the 2.5 kg body begins to move with a kinetic energy of 8 J. Assuming the collision to be one-dimensional, the kinetic energy of the 5 kg body before collision is

(A)3J

(B) 6 J

(D) 11 J

A 1 kg block is attached (and held at rest with outside support) to the free end of a vertically 9. hanging spring of force constant 10 N cm⁻¹. When the block is released, what maximum extension does it cause when it comes to rest instantaneously? $[q = 10 \text{ ms}^{-2}]$


(A) 1 cm

(B) 2 cm

(C) 3 cm

(D) 4 cm

10. Four point masses are arranged in the X-Y plane. The moment of inertia of this array of masses about Y-axis is

(A) ma²

(B) 2ma²

(C) 4ma²

(D) 6ma²

11. A mass m is moving with a constant velocity parallel to the x-axis. Its angular momentum w.r.t. the

- (A) remains constant (B) goes on increasing (C) goes on decreasing (D) is zero
- A tangential force F acts at the rim of a ring of radius R and causes the ring to turn through an angle θ . The work done by the force will be

(A) FR

(B) FR θ

(C) FR- $\frac{1}{\theta}$

(D) $FR - \theta$

13. Imagine a light planet revolving around a very massive star in a circular orbit of radius R with a period of revolution T. If the gravitational force of attraction between planet and star is proportional

to $R^{\frac{1}{2}}$, then T^2 is proportional to

(B) $R^{7/2}$

(C) $R^{5/2}$

(D) $R^{3/2}$

(A) R³14. The magnitudes of the gravitational force at distances r_1 and r_2 from the centre of a uniform sphere of radius R and mass M are F₁ and F₂ respectively. Then

(A)
$$\frac{F_1}{F_2} = \frac{r_1}{r_2}$$
 if $r_1 < R$ and $r_2 < R$

(B)
$$\frac{F_1}{F_2} = \frac{r_1^2}{r_2^2}$$
 if $r_1 > R$ and $r_2 < R$

(C)
$$\frac{F_1}{F_2} = \frac{r_1}{r_2}$$
 if $r_1 > R$ and $r_2 > R$

(D)
$$\frac{F_1}{F_2} = \frac{r_1^2}{r_2^2}$$
 if $r_1 < R$ and $r_2 < R$

15. A mass M is split into two parts, m and (M–m), which are then separated by a certain distance. What ratio of m/M maximizes the gravitational force between the two parts

- (A) 1/3
- (B) 1/2
- (C) 1/4

(D) 1/5

16. The equation of motion of a particle is $\frac{d^2y}{dt^2} + Ky = 0$, where K is positive constant. The time period of the motion is given by

- (A) $\frac{2\pi}{K}$
- (B) 2πK
- (C) $\frac{2\pi}{\sqrt{K}}$
- (D) $2 \pi \sqrt{K}$

17. A particle executes S.H.M. in a line 4 cm long. Its velocity when passing through the centre of line is 12 cm/s. The period will be

- (A) 2.047 s
- (B) 1.047 s
- (C) 3.047 s
- (D) 0.047 s

18. A simple harmonic wave having an amplitude a and time period T is represented by the equation $y = 5 \sin \pi (t + 4)m$. Then the value of amplitude (a) in (m) and time period (T) in second are

- (A) a = 10, T = 2
- (B) a = 5, T = 1
- (C) a = 10, T = 1
- (D) a = 5, T = 2

19. A mono atomic gas is supplied the heat Q very slowly keeping the pressure constant. The work done by the gas will be

- (A) $\frac{2}{3}$ Q
- (B) $\frac{3}{5}$ Q
- (C) $\frac{2}{5}$ Q
- (D) $\frac{1}{5}$ Q

20. A cylindrical tube of uniform cross-sectional area A is fitted with two air tight frictionless pistons. The pistons are connected to each other by a metallic wire. Initially the pressure of the gas is P_0 and temperature is T_0 ,

atmospheric pressure is also P_0 . Now the temperature of the gas is increased to $2T_0$, the tension in the wire will be

- (A) 2P₀A
- (B) P₀A
- (C) $\frac{P_0A}{2}$
- (D) 4P₀A

21.	 The molar heat capacity in a process of a diatomic gas if it does a work of Q/4 when a heat of supplied to it is 				
	(A) $\frac{2}{5}$ R	(B) $\frac{5}{2}$ R	(C) $\frac{10}{3}$ R	(D) $\frac{6}{7}$ R	
22.	each other with a force same radius as that of	e F when kept apart and B but uncharged is bro	t some distance. A third	qual charges in them repel spherical conductor having en brought in contact with C n B and C is (D) 3F / 8	
23.	a distance 5×10^{-11} m, kg, mass of proton = 1	will be (Charge on election 6×10^{-27} kg, $G = 6.7 \times 10^{-27}$	ctron = $1.6 \times 10^{-19} \text{ C}$, ma $10^{-11} \text{ Nm}^2/\text{kg}^2$)	on and proton separated by ass of electron = 9.1×10^{-31}	
	(A) 2.36×10^{39}	(B) 2.36×10^{40}	(C) 2.34 × 10	(D) 2.34×10^{42}	
24.	spheres are kept fixed	with a distance 'r' betwe th A and then placed	en them. A third identical	other with a force 'F'. The l, but uncharged sphere C is line joining A and B. The	
	(A) F	(B) 3F/4	(C) F/2	(D) F/4	
25.	Every atom makes one having 1 mm diameter and atomic weight = 63 (A) 0.3 mm/sec	, then the drift velocity (a	. If 1.1 ampere current is approx.) will be (Density of (C) 0.2 mm/sec	flowing in the wire of copper of copper = $9 \times 10^3 \text{ kg m}^{-3}$ (D) 0.2 cm/sec	
26.	On increasing the temp (A) Relaxation time dec (C) Electron density de	creases	its resistance increases to (B) Mass of the electron (D) None of the above		
27.	The resistance of a wi	re is 10Ω . Its length is i	increased by 10% by stre	etching. The new resistance	
	(A) 12 Ω	(B) 1.2 Ω	(C) 13 Ω	(D) 11 Ω	
28.				gle θ about an axis through	
	the point of incidence in the plane of the mirror perpendicular to the plane of incidence, then (A) The reflected ray does not rotate (B) The reflected ray rotates through an angle θ (C) The reflected ray rotates through an angle 2θ (D) The incident ray is not fixed				
29.	Image formed by a cor	ncave mirror of focal len	gth 6 cm, is 3 times of the	object, then the distance of	

	object from mirror is (A) –4 cm	(B) 8 cm	(C) 6 cm	(D) 12 cm
30.		uld be filled in a containe the container (given tha (B) 10.5 cm		at it appears half filled when (D) None of these
		CHEN	<u>IISTRY</u>	
31.		of 6.3 g of oxalic acid dimpletely neutralise 10 m		250 <i>ml</i> . The volume of 0.1
	(A) 40 <i>ml</i>	(B) 20 <i>ml</i>	(C) 10 <i>ml</i>	(D) 4 <i>ml</i>
32.	The normality of orthowould be	ophosphoric acid having	g purity of 70% by weig	ht and specific gravity 1.54
	(A) 11 <i>N</i>	(B) 22 <i>N</i>	(C) 33 <i>N</i>	(D) 44 <i>N</i>
33.	4 s	3 <i>d</i>	n distribution in the grour	nd state
	(A) $Co(Ar)$ $\uparrow\downarrow$ $\uparrow\downarrow$	$\uparrow\downarrow$ \uparrow \uparrow	(B) $Ni(Ar)$ $\uparrow \downarrow$ $\uparrow \downarrow$	$\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow
	(C) $Cu(Ar)$ $\uparrow \downarrow$ $\uparrow \downarrow$	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow	(D) $Zn(Ar)$ $\uparrow \downarrow$ $\uparrow \downarrow$	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$
34.		ed with these particles ar en > helium > neon		
rí	(A) CH ₄	wing contains ionic as w (B) H ₂	vell as covalent bond (C) KCN	(D) <i>KCl</i>
36.	The solution of sugar i (A) Free atoms (C) Free ions	n water contains	(B) Free molecules (D) Free atoms and free	molecules
37.			prepare of solution. Wh	at is the strength of NaCl in
	this solution (mol. wt. o (A) 0.1 Normal	of <i>NaCl</i> = 58.5) (B) 0.1 Molal	(C) 0.1 Molar	(D) 0.1 Formal
38.	-	s 70 percent. If the vap	•	ontaining 14 g of the salt per $100^{\circ}C$ is 760 cm . Calculate

•

39.	(A) 746.3 <i>mm</i> of <i>Hg</i> In zinc blende structure	` ,	(C) 740.9 mm of Hg	(D) 750 <i>mm</i> of <i>Hg</i>
55.	(A) All octahedral holes (C) Half number of octa	· S	(B) All tetrahedral holes (D) Half number of tetrah	nedral holes
40.	Which ion has the lowe	est radius from the follow	_	
	(A) <i>Na</i> ⁺	(B) Mg ²⁺	(C) Al ³⁺	(D) Si ⁴⁺
41.	The root mean square	speeds at STP for the g	ases H_2, N_2, O_2 and $HBra$	are in the order
	(A) $H_2 < N_2 < O_2 < HBr$	(B) $HBr < O_2 < N_2 < H_2$	(C) $H_2 < N_2 = O_2 < HBr$	(D) $HBr < O_2 < H_2 < N_2$
42.	By what ratio the aver from 50 to 200° C	age velocity of the mole	ecule in gas change whe	n the temperature is raised
	(A) 1.21 / 1	(B) 1.46 / 1	(C) 1.14 / 1	(D) 4 / 1
43.	For the reaction $CO(g)$ +	$-\frac{1}{2}O_2(g) \rightleftharpoons CO_2(g); \frac{K_p}{K_c} \text{ is}$	equivalent to	
	(A) 1	(B) <i>RT</i>	(C) $\frac{1}{\sqrt{RT}}$	(D) $(RT)^{1/2}$
44.	$2N_2O_5 \rightarrow 4NO_2 + O_2$ what	is the ratio of the rate o	f decomposition of N_2O_5 t	o rate of formation of NO2
	(A) 1:2	(B) 2:1	(C) 1:4	(D) 4:1
45.	The pH of 0.1 M solution	on of the following salts i	ncreases in the order	
	(A) $NaCl < NH_4Cl < NaCN$	< HCl	(B) $HCl < NH_4Cl < NaCl < Na$	laCN
	(C) $NaCN < NH_4Cl < NaCl$	< HCl	(D) $HCl < NaCl < NaCN < NaCl < NaCl$	H ₄ Cl
46.		sis in hydrolytic equilibru		duna
V	$A^- + H_2O \rightleftharpoons HA + OH^-$ at $\left(K_a = 1 \times 10^{-5}\right)$	t salt concentration of 0.0	001 M is	
	(A) 1×10^{-3}	(B) 1×10 ⁻⁴	(C) 5×10^{-4}	(D) 1×10^{-6}
47.			ice at constant pressure	
	(A) Zero	(B) Infinity (∞)	(C) $40.45 kJ K^{-1} mol^{-1}$	(D) $75.48 J K^{-1}$
48.	Internal energy does not (A) Nuclear energy	ot include	(B) Rotational energy	
	(C) Vibrational energy		(D) Energy arising by gra	avitational pull
49.	The minimum energy r	equired for molecules to	enter into the reaction is	called
	(A) Potential energy	(B) Kinetic energy	(C) Nuclear energy	(D) Activation energy

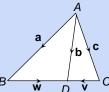
()

50.	The minimum energy necessary to permit a re (A) Internal energy (B) Threshold energy	action is (C) Activation energy (D) Free energy			
51.	Electrolytes when dissolved in water dissociate (A) They are unstable (C) The force of repulsion increases	es into ions because (B) The water dissolves it (D) The forces of electrostatic attraction are broken down by water			
52.	·				
53.	In the reaction between ozone and hydrogen p (A) Oxidising agent (C) Bleaching agent	peroxide, H_2O_2 acts as (B) Reducing agent (D) Both oxidising and bleaching agent			
54.	The oxidation state of each oxygen atom in N_0 (A) – 2 each (B) – 2 and zero	a_2o_2 is (D) None of the above			
55.	Peptising agent is (A) Always an electrolyte (C) Electrolyte or non-electrolyte	(B) Always a non-electrolyte (D) A lyophilic colloid			
56.57.	The catalyst used in the manufacture of method (A) v_2o_5 (B) $Ni + Mo$ Which of the following elements are analogous	(C) $ZnO + cr_2O_3$ (D) $Pt + W$ s to the lanthanides			
58.	(A) Actinides (B) Borides Which of the order for ionisation energy is corr				
	(A) $Be > B > C > N > O$ (B) $B < Be < C < O < N$				
59.	Which of the following ions, will have maximum (A) Sr^{2+} (B) Ba^{2+}	m hydration energy (C) Ca^{2+} (D) Mg^{2+}			
60.	When orthophosphoric acid is heated to 600° C (A) Phosphine, PH_3 (C) Phosphorus acid, H_3PO_3	t, the product formed is (B) Phosphorus pentoxide, P_2O_5 (D) Metaphosphoric acid,			

•

MATHEMATICS

61.	Let $A = \{1, 2, 3\}$. The to (A) 2^9	otal number of distinct re (B) 6	elations that can be define (C) 8	ed over A is (D) None of these	
62.	Let $P = \{(x,y) x^2 + y^2 = 1, \dots \}$ (A) Reflexive	$\{x, y \in R\}$. Then P is (B) Symmetric	(C) Transitive	(D) Anti-symmetric	
63.	number of relations fro	m A to B is		having <i>n</i> elements, then the	
	(A) 2 ^{mn}	(B) 2 ^{mn} -1	(C) 2mn	(D) m ⁿ	
64.	For all complex numbers	ers z_1, z_2 satisfying $ z_1 =$	$ z_2 - 3 - 4i = 5$, the	e minimum value of $ z_1 - z_2 $	
	(A) 0	(B) 2	(C) 7	(D) 17	
65.	If P , Q , R , S are represented as $PQRS$ is a	resented by the comple.	x numbers 4 + i, 1 + 6i, -4 -	+3i, $-1-2i$ respectively, then	
	(A) Rectangle	(B) Square	(C) Rhombus	(D) Parallelogram	
66.	The points $1+3i$, $5+i$ ar (A) Vertices of a right a	nd $3+2i$ in the complex panaled triangle	olane are (B) Collinear		
	(C) Vertices of an obtu	•	(D) Vertices of an equila	teral triangle	
67.	The sixth term of an A.P. is equal to 2, the value of the common difference of the A.P. which makes the product $a_1a_4a_5$ least is given by				
	$(A) x = \frac{8}{5}$	(B) $x = \frac{5}{4}$	(C) $x = 2/3$	(D) None of these	
68.	If $y = x + x^2 + x^3 + \dots \infty$,	then $x =$			
há	(A) $\frac{y}{1+y}$	(B) $\frac{1-y}{y}$	(C) $\frac{y}{1-y}$	(D) None of these	
69.		ies 12 + 16 + 24 + 40 + V			
	(A) $2(2^n - 1) + 8n$	(B) $2(2^n - 1) + 6n$	(C) $3(2^n - 1) + 8n$	(D) $4(2^n - 1) + 8n$	
70.	If the roots of the equa	ation $ax^2 + x + b = 0$ be re	al, then the roots of the e	equation $x^2 - 4\sqrt{ab}x + 1 = 0$ will	
	(A) Rational	(B) Irrational	(C) Real	(D) Imaginary	
71.	If one of the roots of value of $(a+b)$ is	the equation $x^2 + ax + b =$	$0 \text{ and } x^2 + bx + a = 0 \text{ is coi}$	ncident, then the numerical	
	(A) 0	(B) – 1	(C) 2	(D) 5	


72.	If a man and his wife ways in which they car			hen the number of different
	(A) 2	(B) 5	(C) 20	(D) 40
73.	in dictionary, then the	word SACHIN appears a	t serial number	se words are written out as
	(A) 603	(B) 602	(C) 601	(D) 600
74.	If x^4 occurs in the r^{th}	term in the expansion of	$\left(x^4 + \frac{1}{x^3}\right)^{15}$, then $r =$	
	(A) 7	(B) 8	(C) 9	(D) 10
75.	The first 3 terms in the are respectively	e expansion of $(1+ax)^n$ ($n \neq 0$) are 1, 6x and 16x ² .	Then the value of a and n
	(A) 2 and 9	(B) 3 and 2	(C) 2/3 and 9	(D) 3/2 and 6
			a-x c b	
76.	If $a+b+c=0$, then the s	solution of the equation	$\begin{vmatrix} c & b-x & a \\ b & a & c-x \end{vmatrix} = 0 \text{ is}$	
	(A) 0	(B) $\pm \frac{3}{2}(a^2+b^2+c^2)$	(C) $0, \pm \sqrt{\frac{3}{2}(a^2 + b^2 + c^2)}$	(D) $0, \pm \sqrt{a^2 + b^2 + c^2}$
77.	$\begin{vmatrix} 1+i & 1-i & i \\ 1-i & i & 1+i \\ i & 1+i & 1-i \end{vmatrix} =$		Y 2	(D) 7 + 4 <i>i</i>
	(A) -4-7 <i>i</i>	(B) 4+7i	(C) 3+7 <i>i</i>	(D) $7 + 4i$
78.	In a skew symmetric m (A) Different from each (C) One	natrix, the diagonal element of the control of the	ents are all (B) Zero (D) None of these	JUIIIc
79.	If A is a square matrix	of order n and $A = k B$, w	where k is a scalar, then $ A $	∖ =
	(A) B	(B) <i>k</i> <i>B</i>	(C) k" B	(D) n B
80.	$\cos^2 76^o + \cos^2 16^o - \cos 76$	$^{\circ}\cos 16^{\circ} =$		
	(A) - 1/4	(B) ½	(C) 0	(D) 3/4
81.	$\cos\frac{\pi}{7}\cos\frac{2\pi}{7}\cos\frac{4\pi}{7} =$			
	(A) 0	(B) _	(C) –	(D)

82.	The solution	of the eq	uation 4 co	$\cos^2 x + 6$	$\sin^2 x = 5$
02.	THE SOLUTION	or tile eq	Juditori + co	35 A 1 U	sm x = 3

- (A) $x = n\pi \pm \frac{\pi}{2}$
- **(B)** $x = n\pi \pm \frac{\pi}{4}$
- (C) $x = n\pi \pm \frac{3\pi}{2}$
- (D) None of these

- (A) $2\mathbf{a} + \mathbf{b} + \mathbf{c}$
- (B) a + 2b + c
- (C) a + b + 2c
- (D) $\mathbf{a} + \mathbf{b} + \mathbf{c}$

84. If the sum of the squares of the distance of a point from the three co-ordinate axes be 36,then its distance from the origin is

(A) 6

- (B) $3\sqrt{2}$
- (C) $2\sqrt{3}$
- (D) None of these

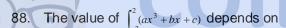
85. If
$$f(x) = 4x^3 + 3x^2 + 3x + 4$$
, then $x^3 f(\frac{1}{x})$ is

- **(A)** f(-x)
- (B) $\frac{1}{f(x)}$
- (C) $\left(f\left(\frac{1}{x}\right)\right)^2$
- (D) f(x)

86. If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0 attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals

(A) 3

(B) 1


(C) 2

(D) $\frac{1}{2}$

87. The function
$$f(x) = \frac{\ln(\pi + x)}{\ln(e + x)}$$
 is

(A) Increasing on $[0,\infty)$

- (B) Decreasing on $[0,\infty)$
- (C) Decreasing on $\left[0, \frac{\pi}{e}\right]$ and increasing on $\left[\frac{\pi}{e}, \infty\right]$
- (D) Increasing on $\left[0, \frac{\pi}{e}\right]$ and decreasing on $\left[\frac{\pi}{e}, \infty\right]$

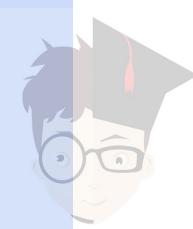
- (A) The value of a
- (B) The value of b
- (C) The value of c
- (D) The values of a and b

89. Three letters are to be sent to different persons and addresses on the three envelopes are also written. Without looking at the addresses, the probability that the letters go into the right envelope is equal to

- (A) $\frac{1}{27}$
- (B) $\frac{1}{9}$

(C) $\frac{4}{27}$

(D) $\frac{1}{6}$


90. Two dice are thrown. The probability that the sum of numbers appearing is more than 10, is(A)

 $\frac{1}{18}$ (B)

 $\frac{1}{12}$

(C) $\frac{1}{6}$

(D) None of these

collegedunia